An extremely dry summer in Manchester

Right at the end of the extremely dry period we had this summer I decided to do a little experiment: I started taking a photo of the patch of grass in my street in Manchester, in the North West of England, every couple of days. I study the effects of drought on ecosystems (see my previous posts about the effects of drought belowground here and here) and I thought it would be nice to show how the grass in my street would bounce back after the rain had started.

Only… it didn’t. The rain did not come as intensely as I expected, and the grass did not bounce back as quickly as I expected. The first (top left) photo was taken on the 12thof July, the last (bottom right) on the 20thof August. And still you can see bare soil and brown patches! This patch of grass would look a lot lusher and greener during a normal Manchester summer.

Manchester grass

The grass in my street in Manchester this summer. 

But, more importantly, while aboveground plant growth seems mostly recovered, the composition of the community has changed (which you can’t see in these photos), and as I’ve shown in my research, this might continue to affect belowground communities and the processes they perform.

Of course, this little patch of grass in Manchester is not that important for the functioning of our ecosystems. But it is a nice illustration of the impacts of an extremely dry summer on grassland and how long it takes for these fast-growing plants to regain their biomass!

Advertisements

Blood, sweat, and tears: the story behind the paper

I have already hinted at it in a previous post, and I have been tweeting a lot about it during the past couple of days: our paper ‘Soil food web properties explain ecosystem services across European land use systems’ is now online on the PNAS website! The paper is about, well, soil food webs, and how important they are for ecosystem services. Of course, I already knew that, as did many others, and relationships between groups of soil organisms and ecosystem processes have been shown before. But in this paper, we show that there are strong and consistent relationships between soil food web properties and processes of carbon and nitrogen cycling on a European scale!

Anyway, this is all pretty exciting, but I don’t want to write about the actual content and message of the paper here. No. Because when you see a paper like this, nice and shiny and with a blue PNAS logo on the side, with slick figures, a list of references, online supplementary information, and a small box detailing the contribution of each author, oh, and not to forget the acknowledgements thanking the funder, the landowners, and the people who helped in the lab, you don’t think about all the blood, sweat, and tears that went into putting together such a paper. And blood, sweat, and tears went in it. Continue reading

Drought belowground

There is a heat wave in the UK, and at least in the north, where I live, not a single drop of rain has fallen for at least three weeks. I quite like it, especially since last year was basically one long, wet, windy autumn and I was craving for a real summer. But, with temperatures this high, and with this little rainfall, many plants are starting to look a bit poorly. Grass is turning brown, and forbs are hanging their heads. Especially in the north of England, where normally everything is lush and green around this time, this is an unusual sight.

I know this all too well, because I am running a drought experiment – our drought pots have been tortured to the max and we wouldn’t have needed the sturdy roofs, while we had to water our control pots.

Does this look dire? Then take a look at what's happening belowground! Pots from my on-going drought experiment.

Does this look dire? Then take a look at what’s happening belowground! Pots from my on-going drought experiment.

So, plants are having a hard time, and I can imagine farmers are becoming worried. Because summer droughts are expected to increase in the UK, and when crops are stressed to their limit, this will lead to yield reductions. Modern agricultural crops have evolved to be adapted to high-resource, low risk environments, and have very different properties than their wild ancestors (read this great paper by García-Palacios et al.) – properties that are not much good for resisting drought conditions.

However, if you think that carnage is going on aboveground, then take a look belowground. Continue reading

To share or not to share?

Big data is great. I don’t think anyone can argue against the benefits of making datasets, whether they are from independent, controlled experiments, or from large-scale projects such as the Earth microbiome, publicly available. Depositing your data in one of the databases available, such as figshare or MG-RAST, can only ever help science. It progresses science by preventing fraud, making the process more transparent, and allowing for crosschecking of results. Sharing facilitates discussion. I have never heard of unethical use of shared data.

Nothing new there. In fact, sharing data might prevent masses and masses of unpublished data from getting lost forever, and thus has the potential to save millions of pounds of public money being spent on experiments that have already been done, but that no one knows about. Think about all those PhD thesis chapters, all analysed and written up, that never get published, and are therefore potentially lost for science forever. Similar to their open access strategy, research councils and funding agencies should perhaps set up a system that obliges PhD students to deposit their data before they can get their doctorate. Continue reading